作者单位
摘要
中国科学技术大学物理学院光学与光学工程系,安徽 合肥 230026
光学薄膜广泛应用于光学仪器和测控技术中,充斥着我们生活的方方面面,使我们的生活更加丰富多彩。不同于常规的光学薄膜应用场景,本综述重点介绍如何将光学薄膜与光学显微成像结合起来。研究方案主要是:基于负载表面等离子体波的贵金属薄膜、具有光子带隙结构的介质多层薄膜,研制出应用于无标记显微探测的平面薄膜光子元件。得益于其平面结构特性与成熟的制作工艺,该类薄膜光子元件可兼容常规明场、宽场显微成像系统,可以作为被测样品的衬底或成像系统的插件。借助于薄膜与光波的近-远场相互作用特性,该器件可以调控系统的照明光场,如实现暗场照明、全内反射照明、边缘增强照明等。通过照明方式的改变,提升成像的对比度、探测灵敏度,进而发展出多模式、高灵敏度、高对比度、无标记光学显微成像与传感系统。为充分发挥该系统结构简单、宽场、高灵敏度、无标记成像的特点,将其应用于环境光子学领域,实现了真实大气环境中单个超细颗粒物吸湿增长过程的原位、实时、无损表征,有望为大气雾霾溯源与追因研究提供有力的科学支撑和技术工具。
薄膜光场调控,介质多层薄膜 贵金属薄膜 无标记显微探测 大气超细颗粒物 
激光与光电子学进展
2024, 61(6): 0618012
Fengya Lu 1Lei Gong 1,2,4,*Yan Kuai 1Xi Tang 1[ ... ]Douguo Zhang 1,2,5,*
Author Affiliations
Abstract
1 Advanced Laser Technology Laboratory of Anhui Province, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China
2 Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
3 Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350117, China
4 e-mail: leigong@ustc.edu.cn
5 e-mail: dgzhang@ustc.edu.cn
Opto-thermophoretic manipulation is emerging as an effective way for versatile trapping, guiding, and assembly of biological nanoparticles and cells. Here we report a new opto-thermophoretic tweezer based on an all-dielectric one-dimensional photonic crystal (1DPC) for reversible assembly of biological cells with a controllable center. To reveal its ability of long-range optofluidic manipulation, we demonstrate the reversible assembly of many yeast cells as well as E. coli cells that are dispersed in water solution. The 1DPC-based tweezer can also exert short-range optical gradient forces associated with focused Bloch surface waves excited on the 1DPC, which can optically trap single particles. By combining both the optical and thermophoretic manipulation, the optically trapped single polystyrene particle can work as a controllable origin of the reversible cellular assembly. Numerical simulations are performed to calculate the temperature distribution and convective flow velocity on the 1DPC, which are consistent with the experimental observations and theoretically confirm the long-range manipulations on the all-dielectric 1DPC platform. The opto-thermophoretic tweezers based on all-dielectric 1DPC endow the micromanipulation toolbox for potential applications in biomedical sciences.
Photonics Research
2022, 10(1): 01000014
Chen Liu 1,2,3Michael Malek 2Ivan Poon 4Lanzhou Jiang 4[ ... ]Shan Shan Kou 2,4,6,9,17,*
Author Affiliations
Abstract
1 Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, China
2 Department of Chemistry and Physics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia
3 Department of Optics and Optical Engineering, Anhui Key Laboratory of Optoelectronic Science and Technology, University of Science and Technology of China, Hefei 230026, China
4 Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia
5 Australian Research Council (ARC), Centre of Excellence in Advanced Molecular Imaging, Australia
6 Istituto Italiano di Tecnologia, Genova 16163, Italy
7 School of Physics, University of Melbourne, Victoria 3010, Australia
8 School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
9 Microvision and Microdiagnostic Group (SCI STI CHD), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
10 Laboratory for Cellular Imaging and Energetics, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
11 Joint International Research Unit in Neurodevelopment and Child Psychiatry, CHUV, Département de Psychiatrie, Lausanne, Switzerland, Université Laval, Québec, Canada
12 Institut universitaire en santé mentale de Québec, Québec, Canada
13 Centre d’optique, photonique et laser, Department of Psychiatry and Neuroscience, Université Laval, 2375 rue de la Terrasse, Québec, QC G1V 0A6, Canada
14 e-mail: xcyuan@szu.edu.cn
15 e-mail: christian.depeursinge@epfl.ch
16 e-mail: Pierre.Marquet@neuro.ulaval.ca
17 e-mail: s.kou@latrobe.edu.au
We report a dual-contrast method of simultaneously measuring and visualizing the volumetric structural information in live biological samples in three-dimensional (3D) space. By introducing a direct way of deriving the 3D scattering potential of the object from the synthesized angular spectra, we obtain the quantitative subcellular morphology in refractive indices (RIs) side-by-side with its fluorescence signals. The additional contrast in RI complements the fluorescent signal, providing additional information of the targeted zones. The simultaneous dual-contrast 3D mechanism unveiled interesting information inaccessible with previous methods, as we demonstrated in the human immune cell (T cell) experiment. Further validation has been demonstrated using a Monte Carlo model.
Photonics Research
2019, 7(9): 09001042
作者单位
摘要
中国科学技术大学光学与光学工程系, 安徽 合肥 230026
基于转移矩阵法分析了Tamm结构中的电磁场分布与共振模式,提出了小 孔-Tamm复合结构来增强荧光信号及控制辐射方向。用时域有限差分法 (FDTD)模拟了偶极子与该小孔-Tamm复合结构相互作用的耦合辐射场的远 场辐射,证明了该结构能够实现荧光的垂直出射,且与传统的Tamm结构相 比,其荧光强度有三个数量级的提高;系统地分析比较了荧光发射波长、 偶极子位置及小孔尺寸、形状对荧光辐射角度和强度的影响。模拟结果对 具有荧光增强定向辐射功能的光学芯片设计有指导作用。
微纳光学 Tamm结构 荧光增强 定向辐射 micro-nano optics Tamm structure fluorescence enhancement directional emission 
量子电子学报
2018, 35(1): 1
Author Affiliations
Abstract
Department of Optics and Optical Engineering, Anhui Key Laboratory of Optoelectronic Science and Technology, University of Science and Technology of China, Hefei 230026, China
The interference of optically induced electric and magnetic resonances in high-refractive-index dielectric nanoparticles provides a new approach to control and shape the scattering patterns of light in the field of nanophotonics. In this Letter, we spectrally tune the electric and magnetic resonances by varying the geometry of a single isolated lead telluride (PbTe) dielectric nanocube. Then, we overlap the electric dipole resonance and magnetic dipole resonance to suppress backward scattering and enhance forward scattering in the resonance region. Furthermore, a broadband unidirectional scattering is achieved by structuring the dielectric nanocuboids as a trimer antenna.
160.3918 Metamaterials 290.0290 Scattering 050.6624 Subwavelength structures 
Chinese Optics Letters
2016, 14(1): 011601
王向贤 1,2,*汪波 1傅强 1陈漪恺 1[ ... ]明海 1
作者单位
摘要
1 中国科学技术大学光学与光学工程系, 安徽 合肥 230026
2 巢湖学院物理与电子科学系, 安徽 巢湖 238000
优化设计了365 nm紫外LED点光源阵列、聚焦透镜组的排布,实现了高强度均匀辐照的LED面光源。利用优化后的365 nm LED面光源进行了接触式曝光光刻实验,所得刻写图形与掩模板图形一致。提出的基于365 nm紫外LED阵列均匀辐照面光源的光刻方法具有结构简单、节能、环保等优势。
光学制造 紫外发光二极管 阵列 光刻 
中国激光
2012, 39(4): 0416001
Author Affiliations
Abstract
1 Academe of Optoelectronic Technology, Hefei University of Technology, Hefei 230009
2 Department of Physics, University of Science and Technology of China, Hefei 230026
3 College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037
We describe a simple and cost-effective holographic method for the fabrication of surface-relief zone plates. The zone plate is inscribed by interference between the first- and second-order diffracted waves from an ion-etched Fresnel zone plate. The inscribed surface-relief zone plates are observed by atomic force microscope (AFM). The formation process of the surface grating and the mass diffusion in azo polymer are analyzed.
波带片 偶氮 激光诱导 表面光栅 160.5470 Polymers 310.6860 Thin films, optical properties 050.1950 Diffraction gratings 
Chinese Optics Letters
2007, 5(5): 255
Author Affiliations
Abstract
1 Department of Physics, University of Science and Technology of China, Hefei 230026
2 Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026
3 Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Science, Beijing 100080
In this article, we reported near-field research on azobenzene polymer liquid crystal films using scanning near-field optical microscopy (SNOM). Optical writing and subsequently topographic reading of the patterns with subwavelength resolution were carried out in our experiments. Nanometer scale dots and lines were successfully fabricated on the films and the smallest dot diameter is about 120 nm. The width of the line fabricated is about 250 nm. This method is also a choice for nanolithography. The mechanism of the surface deformation on the polymer films was briefly analyzed from the viewpoint of gradient force in the optical near field. The intensity distribution of the electric field near the tip aperture was numerically simulated using finite-difference time-domain (FDTD) method and the numerical simulation results were consistent with the experimental results.
180.5810 scanning microscopy 100.6640 superresolution 220.4610 optical fabrication 
Chinese Optics Letters
2005, 3(2): 02107

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!